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Extra Practice Problems

Here are some extra practice problems on topics that were popular on the Google Moderator site. 
We'll release solutions to these problems on Monday.

Problem One: Binary Relations

Suppose that R and S are binary relations over some set A.  The composition of R and S, denoted 
S  ∘ R, is the relation defined as follows:

For any x, y  ∈ A,  x(S  ∘ R)y  iff  there is some z ∈ A such that xRz and zSy.

One interesting special case to consider is the composition of a relation with itself. Given a binary 
relation R, the relation R  ∘ R is defined as follows: x(R  ∘ R)y iff there is some z such that xRz and 
zRy. We use the notation R2 to denote R  ∘ R.

Prove that R = R2 if R is reflexive and transitive. Recall that R = R2 iff for any x, y  ∈ A, we have 
that xRy iff xR2y.

Problem Two: Diagonalization

As you'll see on Friday's lecture, a co-recognizer for a language L is a TM M such that for any 
string w, the TM M rejects w iff w  ∉ L. By definition, a language L is in co-RE iff there is a co-
recognizer M for L.

Let Lco-D = { ⟨M  | ⟩ M is a TM and M rejects ⟨M  }. Prove that ⟩ Lco-D  co-∉ RE. (Hint: use a proof by  
diagonalization.)

Problem Three: First-Order Logic

In what follows, let's assume the domain of discourse is a nonempty set of people, so all quan-
tifiers range over people.

Consider the predicate Drinks(p), which says that p is currently drinking. The drinker's paradox is 
the following statement:

∃p. (Drinks(p) → ∀q. Drinks(q))

This says “there is someone where if that person is drinking, then everyone is drinking.”

i. Explain why the above statement is always true, regardless of who's drinking.

ii. Is the above statement equivalent to the following statement?

(∃p. Drinks(p)) → (∀q. Drinks(q)) 
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Problem Four: Regular Expressions

Below are some alphabets and languages over those alphabets. Design a regular expression for 
each of those languages.

i. Let Σ = {a, b} and let L = { w | w ≠ ε and w starts and ends with the same symbol. } Write 
a regular expression for L.

ii. Let Σ = {0 , 1} and let L = { ⟨w , ₁ w  | ₂⟩ w , ₁ w   Σ* }. That is, ₂ ∈ L is the set of all pairs of 
strings encoded using the encoding format used on Problem Set Seven. Write a regular ex-
pression for L.

iii. Let Σ = {a, b} and let L = { w  Σ* | ∈ w has an even number of b's }. Write a regular ex-
pression for L.

Problem Five: Context-Free Grammars

Below are some alphabets and languages over those alphabets. For each of the languages, write a 
context-free grammar for that language.

i. Let Σ = {a, b} and let L = { anbm | n, m   and ∈ ℕ n ≠ m }. Write a CFG for L.

ii. Let Σ = {a, b} and let L = { w  Σ* | there are more ∈ a's than b's in L }. Write a CFG for L.

iii. (Challenge problem!) Let Σ = {a, b} and let L = { xy | x, y  Σ*, |∈ x| = |y|, and x ≠ y }. In 
other words, L is the language of all strings that whose first half is not the same as its sec-
ond half. Write a CFG for L.

Problem Six: Turing Machines

Let Σ = {0, 1}. Design a Turing machine that, given as input two equal-length strings separated by 
a blank character and surrounded by infinitely many blanks,  computes the XOR of those two 
strings  and ends  with  that  XORed string  written  on  the  tape,  surrounded by infinitely many 
blanks. For example, given this initial configuration:

… 1 0 1 0 1 0 1 1 …0 0 1 1

your Turing machine would end in this configuration:

… 0 1 1 0 0 1 …


